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Abstract: The Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR)
provides an opportunity to investigate hydrometeor properties. Here, an evaluation of the
microphysical framework used within the GPM-DPR retrieval was undertaken using ground-based
disdrometer measurements in both rain and snow with an emphasis on the evaluation of snowfall
retrieval. Disdrometer measurements of rain show support for the two separate prescribed relations
within the GPM-DPR algorithm between the precipitation rate (R) and the mass weighted mean diameter
(Dm) with a mean absolute percent error (MAPE) on R of 29% and 47% and a mean bias percentage
(MBP) of −6% and −20% for the stratiform and convective relation, respectively. Ground-based
disdrometer measurements of snow show higher MAPE and MBP values in the retrieval of R,
at 77% and −52%, respectively, compared to the stratiform rain relation. An investigation using the
disdrometer-measured fall velocity and mass in the calculation of R and Dm illustrates that the variability
found in hydrometeor mass causes a poor correlation between R and Dm in snowfall. The results
presented here suggest that R − Dm retrieval is likely not optimal in snowfall, and other retrieval
techniques for R should be explored.

Keywords: snowfall rate; rainfall rate; radar retrievals

1. Introduction

Global retrievals of precipitation that falls as rain and snow at the surface and aloft are important
for quantifying several key components of the Earth’s water cycle. At the surface, the amount of
snow that falls within a watershed located in mountainous terrain is vital for water supply and water
resource management [1]. Furthermore, even though most of the Earth’s precipitation reaches the
surface as rain, more than 60% of precipitation on average can be connected to ice phase processes
aloft [2]. Thus, in order to obtain a complete quantitative understanding of the hydrologic cycle,
an accurate retrieval of snowfall is required. Moreover, quantifying the total amount of ice mass in the
atmospheric column (i.e., the ice water path (IWP)) has direct implications on the Earth’s radiative
balance and is important for constraining general circulation models [3,4].

One method of retrieving snowfall properties is the use of radar. Since the first use of radar in
atmospheric sciences, studies have shown that snowfall mass—and thus the precipitation rate—is
related to the power scattered back to the radar [5]. In this work, the abbreviation R is used for the
precipitation rate and is used to refer both to the rainfall and snowfall rate. Current spaceborne radars,
such as CloudSat [6] or the Global Precipitation Measurement mission’s Dual-Frequency Precipitation
Radar (GPM-DPR [7]), attempt to retrieve snowfall properties such as R, ice water content (IWC), and in
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the case of GPM enabled by its dual frequency measurements, the mass-weighted mean diameter (Dm)
and characterize the spatial distribution of precipitation rate and microphysical properties.

As the first spaceborne radar designed to observe clouds and precipitation at high latitudes,
CloudSat has been used to retrieve global distributions of near-surface retrieved snowfall. In [8,9],
the authors were the first to investigate global retrievals of snowfall which contained large uncertainty
(e.g., a factor of 10; see figure 1 in [10]) since the basis of the retrieval required the use of a power-law
relation between the measured equivalent radar reflectivity factor (Ze) and the corresponding snowfall
rate (also known as a Ze − R relation), which is sensitive to the assumed particle type used in its
formulation. In order to reduce uncertainty, renewed investigations of the global distribution of
snowfall [11–14] use the CloudSat 2C-SNOWPROFILE product, which uses an optimal estimation
technique [15] to retrieve snowfall rate and produce an uncertainty estimate [16,17]. Since the release
of the 2C-SNOWPROFILE, studies have compared the CloudSat retrieval of R to ground-based
techniques and show encouraging results [18–21], enhancing confidence in the use of the CloudSat
2C-SNOWPROFILE to retrieve global snowfall properties.

In an effort to expand NASA’s earth observing capabilities with an emphasis on global
precipitation, GPM-DPR was launched into orbit in early February 2014. With the new spaceborne
radar, new retrievals of global rainfall and snowfall properties could be obtained (e.g., [22,23]).
Since GPM-DPR is a scanning Ku and Ka-band radar, while CloudSat is a non-scanninng W-band
radar, it requires its own suite of retrievals that make a range of different assumptions. Once a
sufficient sample size of near-coincidences between satellites was obtained, the authors in [24]
investigated GPM-DPR’s ability to detect snowfall events using CloudSat as a reference. They found
that GPM-DPR does not detect more than 90% of the detected snowfall events by CloudSat, attributing
this to GPM-DPR’s lack of sensitivity. Furthermore, in [24], the authors showed that GPM-DPR’s
retrievals of R in falling snow have a large low bias. The bulk statistical evaluation of the GPM-DPR
and CloudSat retrieved products in falling snow by the authors in [14] showed that the global
average retrieved GPM-DPR near-surface snowfall rate is about 43% lower compared to CloudSat
even after carefully considering the differences in sampling (e.g., footprint size), sensitivity and
operating frequency. Regional differences show much larger disparity (see Figure 7 in [14]). The low
bias in the GPM-DPR snowfall retrieval is also shown by [25], where the GPM-DPR’s snowfall
retrieval was considerably lower than relationships derived from measurements collected during
the Olympic Mountains Experiment (OLYMPEX [26]), the Global Precipitation Measurement Cold
Season Experiment (GCPEX [27]) and a mass flux technique that uses mass continuity through the
melting layer and more constrained retrievals in rain. Since various investigators and methods have
shown consistent results, it is evident that the current GPM-DPR retrieval in snowfall is consistently
biased towards low values of R. Furthermore, the results in [14] suggest that the likely reason for this
low bias is the GPM-DPR retrieval algorithm itself and not the satellite hardware (e.g., calibration,
sensitivity, footprint size, scanning/non-scanning) or orbit (e.g., inclination, sun synchronous/non-sun
synchronous).

A primary microphysical assumption made within the GPM-DPR retrieval algorithm is that
there is a prescribed empirical relationship between R and Dm. The R− Dm relation used is derived
ultimately from ground-based disdrometer measurements in the Tropics [28,29] and allows the
simultaneous retrieval of R and Dm for a measured Ze. This framework was first adopted in version 4
of the GPM-DPR algorithm (released in 2016) and is used currently (version 6) for all precipitating
echoes regardless of hydrometeor phase.

Evaluations of GPM-DPR retrieval products within rain have been ongoing. Studies have
considered the direct evaluation of GPM-DPR retrievals with surface-based rain gauges [30], radars [31]
and disdrometers [32]. Results generally show a good agreement and meet the Level 1 Scientific
Requirements of the GPM mission (see Section 1.1.3 of [33]). However, there have been no
investigations of the empirical relation itself and whether it can encapsulate observations of rainfall



Atmosphere 2020, 11, 619 3 of 21

from various meteorological regimes. Furthermore, no studies have verified that the same R− Dm

empirical relation applies to snowfall.
The analysis provided here will assess the empirical relation prescribed between R and Dm

using surface observations of rainfall from various geographic locations and will quantify its error.
Then, observations of surface snowfall will be contextualized in the liquid equivalent R−Dm space for
a direct evaluation of the R− Dm relations used in the GPM-DPR retrieval algorithm. The structure of
the rest of the manuscript is as follows: Section 2 describes the datasets used in this study and how the
data were collected and discusses how PSD parameters are derived from both liquid and solid-phase
PSDs. Section 3 presents the results of how well R− Dm relations generated using PSDs measured in
both rain and snow compare to the prescribed R− Dm relation in the GPM-DPR algorithm, quantifies
error in retrievals emulating the GPM-DPR algorithm and investigates the correlation between R
and Dm. Section 4 presents a brief summary and states the overall conclusions and some future
research ideas.

2. Data and Methodology

2.1. Measurements

2.1.1. Rainfall Data

In order to evaluate the applicability of the prescribed R−Dm relationships within the GPM-DPR
algorithm in rain, data collected as part of NASA Ground Validation (GV) field campaigns and
Department of Energy-Atmospheric Radiation Measurement (DOE-ARM) mobile facility deployments
are used. The NASA GV field campaigns have accumulated numerous surface-based rainfall PSDs
over numerous geographic locations around the United States of America. Specifically, the campaign
data used here are from the following projects: Mid-Latitude Continental Convective Clouds
Experiment (MC3E, Oklahoma [34]), the Iowa Flood Studies (IFloodS, Iowa), Integrated Precipitation
and Hydrology Experiment (IPHEx, North Carolina [35]), and the Olympic Mountain Experiment
(OLYMPEX, Washington State [26]). Data collected at two sites that were not a part of official campaigns
but nevertheless are included in the NASA GV database are also used here, namely data collected in
Huntsville, Alabama and at Wallops Air Force Base, Virginia. In order to add samples from outside the
United States, data are included form several DOE-ARM campaigns and fixed field sites of DOE-ARM.
Specifically, data from the following international sites are used: Cloud, Aerosol and Complex Terrain
Interactions (CACTI, Cordoba, Argentina [36]), Tropical West Pacific (TWP, Darwin, Australia and
Manus Island, Papua New Guinea [37]), Dynamics of the Madden-Julian Oscillation/ Cooperative
Indian Ocean experiment (DYNAMO/CINDY2011, Gan Island, Maldives [38]) and Eastern North
Atlantic (ENA, Graciosa Island in the Azores, Portugal [39]). Finally, a long-term record from the
Southern Great Plains (SGP) site at Lamont, Oklahoma is used [40].

For all the aforementioned campaigns and field sites, data from a two-dimensional video
disdrometer (2DVD [41]) are used. The 2DVD is commonly used as a reference disdrometer
(e.g., [42–44]) that measures particle maximum dimension, shape and fall velocity. The minimum
particle size that can be sampled reliably by the 2DVD is 0.2 mm [41]. The specific data used here
are the processed datafiles that remove particles that have a terminal fall velocity less than 50% of
the predicted fall velocity based on size following the relation in [45]. This prevents data from being
contaminated by secondary drops (i.e., two drops in the sample volume at the same time). Furthermore,
only time periods where the rain rate is greater than 0.01 mm hr−1 and had more than 10 drops within
1 min were considered in the analysis. Then, measured particle size distributions (PSDs) are scaled from
the 1 min averages to 5 min averages. The result of the amalgamation of all the 2DVD measurements is
approximately 1.67 years of raining PSDs. Overview statistics from all 2DVD data and their respective
campaigns are found in Table 1.
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Table 1. Statistics of disdrometer measurements. The equations to calculate the parameters below
are found in the following section, and their means (when R ≥ 0.01 mm hr−1) are reported in the
table. The number of samples refers to the number of 5 min particle size distributions (PSDs). The means
of Nw and Zku were calculated in linear units and then converted to the logarithmic units shown.
The underlined text in the first column denotes the data source and probe.

Campaign or Field Site Number of Samples R Dm Nw Zku

mm hr−1 mm log(m−3 mm−1) dBZ

NASA: 2DVD
MC3E 2357 2.10 1.36 3.65 35.74

IFloodS 8565 2.41 1.27 3.74 35.64
IPHEx 3926 3.54 1.25 3.63 37.88

OLYMPEX 22,401 2.58 1.15 3.97 32.12
Huntsville, AL 9810 2.78 1.26 3.77 35.49

Wallops, VA 32,447 1.93 1.12 3.81 32.92

DOE: 2DVD
CACTI 6151 1.68 0.86 4.72 32.94

Darwin, AU 8868 6.10 1.57 3.54 42.37
Manus isl, PNG 13,196 4.44 1.38 3.61 38.95

Gan isl, MV 1583 3.77 1.29 3.72 37.48
ENA 34893 1.45 0.90 4.28 30.64
SGP 31871 2.11 1.21 3.88 36.22

NASA: PIP
BAECC 2573 0.53 0.72 4.83 18.44

2.1.2. Snowfall Data

From January until April 2014, a joint field campaign between NASA, the University of
Helsinki, DOE-ARM and the Finnish Meteorological Institute was conducted with an intensive
observation period designed explicitly to study snowfall [46]. The campaign, named the Biogenic
Aerosols—Effectson Clouds and Climate experiment (BAECC), collected data with several
radars (C-band, X-band, Ka-band and W-band; dual-polarized and Doppler; scanning and
non-scanning), surface-based meteorological instruments, vertically pointing microwave radiometers
and surfaced-based automated measurements of snowfall and its PSD. Snowfall rate was measured
directly through two OTT Hydromet Pluvio2 weighing bucket gauges enclosed in a Double Fence
Intercomparison Reference (DFIR) and a Precipitation Imaging Package (PIP)—the successor to
the Snowflake Video Imager [47] and not to be confused with the commonly used aircraft probe,
the Precipitation Imaging Probe.

The PIP is a high-speed camera pointed at a light source that is 2 m away. This allows for
any particle falling within its field of view (48 mm × 64 mm) and between the light source and
the camera to cast a shadow. From these videos of shadowed particles, the particle size and fall
velocity can be diagnosed. Since the terminal fall velocity is explicitly measured for each particle,
the derivation of the mass of each particle can be deduced if atmospheric base state information
(i.e., pressure, temperature) is known. Effectively, the mass can be estimated through hydrodynamic
theory by considering the drag on the particle, the buoyancy of the particle in the fluid (i.e., air) and
gravity [48,49]. This method has been used on other ground-based disdrometers [50–53] as well as
the dataset used herein [54–56]. For a more complete discussion of the retrieval of the mass and its
intricacies, consult section 3a from [54]. After the BAECC campaign concluded its snowfall IOP, the PIP
and weighting bucket gauges remained at the measurement site in southern Finland and are currently
still collecting observations. Thus, the ongoing record is now five complete winter seasons. Since the
processing of the PIP data and retrieval of mass is not trivial, at the time of writing this manuscript,
only the data from February 2014–March 2015 were available. Summary statistics of the PIP data are
shown in Table 1 for comparison against the 2DVD datasets.
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2.1.3. Data Availability

All rainfall data are free for use can be found in two main locations, the NASA GHRC [57] and
ARM DOE data discovery [58]. The processed snowfall observations, including the retrieved mass,
can be found on github [59]. For convenience, some data and the current version of the Algorithm
Theoretical Basis Document (at the time of submission) is found on the github site [60].

2.2. Particle Size Distribution Parameters

2.2.1. Rainfall PSD Parameters

The precipitation rate for rain can be determined from a measured PSD by

R =
nbins

∑
i=0

v(Di) vol(Di) N(Di) ∆Di (1)

where vol(Di) is the volume of liquid water, v(Di) is the terminal fall velocity and N(Di) is the
number distribution function for particles with a maximum dimension of Di − (∆Di

2 ) < Di <

Di + (∆Di
2 ), where ∆Di is the bin width and the subscript i indicates the ith bin of the measured

PSD. The characteristic size of mass weighted mean diameter (Dm) can also be determined from a
measured PSD as

Dm =
∑nbins

i=0 m(Di) Di N(Di) ∆Di

∑nbins
i=0 m(Di) N(Di )∆Di

(2)

where m(Di) is the mass of the particle with a maximum dimension of Di. The bounds of the summation
for Equations (1) and (2) are the minimum (Dmin) and maximum (Dmax) trusted size bin of the 2DVD,
which are 0.2 mm and 10 mm, respectively. If the raindrops are assumed to be spherical, then the
volume and mass of a raindrop with size Di can be substituted into Equations (1) and (2) as follows:

R =
nbins

∑
i=0

v(Di)
π

6
D3

i N(Di) ∆Di, (3)

Dm =
∑nbins

i=0 D4
i N(Di) ∆Di

∑nbins
i=0 D3

i N(Di )∆Di
. (4)

In reality, raindrops larger than 1 mm are not observed to be spherical [61]. On average, if R and
Dm are calculated from the PSDs using a sphere versus a spheroid with the axis ratio predicted in [62],
there is approximately a 10% and 3% overestimation of R and Dm, respectively (not shown). While this
is not a trivial amount of error, it is a noted limitation of the work, and assessing the raindrop shape
assumption within GPM-DPR is a topic of future research.

Under the Rayleigh assumption (generally applicable in S and C-band weather radar retrievals)
where the wavelength of the radar is much greater than the maximum dimension of the particle,
the equivalent radar reflectivity factor (Ze) is given by

Ze =
nbins

∑
i=0

D6
i N(Di) ∆Di (5)

Since the GPM-DPR consists of Ku and Ka-band radars, there could be instances in which Rayleigh
scattering is not a valid assumption. To avoid additional inaccuracies on the wavelength dependence,
the Ku and Ka-band Ze are calculated as

Ze =
λ4

π5|K|2
nbins

∑
i=0

σbsc(Di, λ) N(Di) ∆Di (6)
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where λ is the radar frequency, |K|2 is the dielectric constant (0.93) and σbsc(Di, λ) is the backscatter
cross-section of a spherical raindrop of maximum dimension Di. The σbsc(Di, λ) is determined using
T-matrix theory [63] as implemented by the pytmatrix python package ([64] https://github.com/jle
inonen/pytmatrix). As noted previously, the spherical assumption may not always be correct, and
assuming a sphere results in an average overestimation of Ze by approximately 6%.

In order to classify PSD points into convective or stratiform (Section 3.1), additional PSD
parameters are required. One of the additional parameters is the normalized intercept parameter (Nw),
which is defined as

Nw =
44

πρl

LWC
D4

m
(7)

where ρl is the density of liquid water and LWC is the liquid water content, defined as

LWC =
nbins

∑
i=0

m(Di) N(Di) ∆Di. (8)

The last PSD parameter needed is known as the median volume diameter (D0), which,
when assuming the presence of a gamma size distribution shape, can be written as

D0 = (
3.67 + µ

4 + µ
)Dm (9)

where µ is the shape parameter of the three-parameter gamma distribution. The relation from [65]
between the standard deviation of the mass distribution (σm) and Dm is used to define µ by

µ =
D2

m
σ2

m
− 4, (10)

where σ2
m is defined as

σ2
m =

∑nbins
i=0 (Di − Dm)2m(Di) N(Di) ∆Di

∑nbins
i=0 m(Di) N(Di )∆Di

. (11)

2.2.2. Snowfall PSD Parameters

The conversion from a solid precipitation rate to liquid equivalent snowfall rate is straightforward
and not novel to this study. Equation (1) is re-written with m(Di) and ρl , where m(Di) represents the
retrieved mass estimate of a particle with Di from the PIP,

R =
nbins

∑
i=0

v(Di)
m(Di)

ρl
N(Di) ∆Di. (12)

Calculating a liquid equivalent Dm is not as direct and not commonly done in the literature.
The liquid equivalent diameter (Dmeltedi

) needs to be considered in Equation (2), which—if a sphere is
assumed as the melted shape—can be determined by

Dmeltedi
= 3

√
6m(Di)

πρl
. (13)

Then, Equation (2) becomes

Dm =
∑nbins

i=0 m(Di) Dmeltedi
N(Di) ∆Di

∑nbins
i=0 m(Di) N(Di )∆Di

. (14)

https://github.com/jleinonen/pytmatrix
https://github.com/jleinonen/pytmatrix
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The conversion of N(Di) and ∆Di to a melted equivalent (e.g., N(Dmeltedi
); ∆Dmeltedi

) is not done
for the following reason. Consider Figure 1, where two sample volumes are depicted: one with
frozen hydrometeors and the other with the liquid equivalent. If it is assumed that all particles within
some bin are of the same particle type and that the melted version of the particle forms a sphere
(i.e., no breakup), then the particles simply translate to smaller, higher density versions of themselves.
This then preserves the original number of particles, and thus the product of N(Di)∆Di is equivalent
to N(Dmeltedi

)∆Dmeltedi
, and the integrated parameters such as LWC and total number concentration

are preserved.
In reality, all particles found in one size bin are probably not the same particle type (e.g., same habit,

same degree of riming). To account for this, separate PSDs for different habits would need to be known.
Since the variability of habits and particle densities within each size bin are not well known and are
difficult to determine, the assumption of a single particle type is used.

In order to calculate Ze for snowfall, Equation (6) is used. The only change is in how σbsc(Di, λ) is
determined. To avoid the issues of underestimating the σbsc(Di, λ) when using Mie or T-matrix theory
at higher operating frequencies (Ka-, W- band [66]), σbsc(Di, λ) is derived following the technique
in [67]. The authors of that work simulated several different degrees of rimed aggregates, and their
corresponding scattering properties were determined from the Discrete Dipole Approximation
(DDA [68]). Since particles can have a variety of degrees of riming, and thus a variety of masses
with the same maximum dimension, Equation (6) becomes

Ze =
λ4

π5|K|2
nbins

∑
i=0

σbsc(Di, λ, mi) N(Di) ∆Di (15)

where σbsc(Di, λ, mi) is determined from the Di and m(Di) retrieved by the PIP. This is done using
the kd-tree search algorithm from Scipy [69], which efficiently searches the [67] database of particles
for the particle with the most similar Di and m(Di). This method was chosen instead of taking the
median or mean over all particles simulated in order to allow the natural variability in σbsc(Di, λ, mi)

to propagate into the forward calculation of Ze.

1
1 1

1 1 1

1
2 2 2 2 2

223 3

1
1 1

1 1 1

1
2 2 2 2 2

223 3

Frozen Liquid Equivalent 

Figure 1. Schematic diagram to illustrate the conversion of the measured solid phase size distribution
of particles to the liquid equivalent. The box is an instantaneous sample volume, and the particle
diagrams are from ARTS ([70] https://zenodo.org/record/1175573). Each number corresponds to the
same bin.

https://zenodo.org/record/1175573
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2.3. GPM-DPR Algorithm

A complete description of version 6 of the GPM-DPR algorithm can be found in the Algorithm
Theoretical Basis Document (ATBD, [71]). The microphysical basis of the algorithm assumes the R
and Dm are well correlated, and thus a mathematical relation can be formulated between the two
parameters. Specifically, the relations used to relate R and Dm in the GPM-DPR algorithm are

R = 1.370ε4.258D5.420
m (16)

for convective precipitation and
R = 0.401ε4.649D6.131

m (17)

for stratiform precipitation. In both expressions, ε is a diagnosed parameter that is constant in the
atmospheric column and is used to reconcile estimates of path integrated attenuation (PIA) and the
retrieved PSD parameters. The default value is ε = 1, but this is logarithmically varied between 0.2
and 5. The relationship between Ze, R and Dm can be calculated with some assumptions about the PSD.
In the GPM-DPR algorithm, the form of the PSD is assumed to be the normalized three-parameter
(Nw;Dm;µ) gamma distribution [72]:

N(D) = Nw
6(µ + 4)µ+4

44Γ(µ + 4)
(

D
Dm

)µ exp (
(µ + 4)D

Dm
) (18)

The µ parameter in the GPM-DPR algorithm is assumed to be three; thus, the PSD can be described
using two parameters: Nw and Dm. Equation (1) can then be rewritten with the GPM-DPR assumptions
in integral form as

R =
∫ ∞

0
v(D) vol(D) Nw

6(µ + 4)µ+4

44Γ(µ + 4)
(

D
Dm

)µ exp (
(µ + 4)D

Dm
)dD (19)

where v(D) in the GPM-DPR algorithm follows [73]

v(D) = 4.854D exp (−0.195D). (20)

Similarly, Equation (6) can be rewritten as

Ze =
λ4

π5|K|2
∫ ∞

0
v(D) σbsc(D, λ) Nw

6(µ + 4)µ+4

44Γ(µ + 4)
(

D
Dm

)µ exp (
(µ + 4)D

Dm
)dD (21)

where particles are assumed to be spherical and Mie theory is used to determine σbsc(Di, λ). Since the
relation between R and Dm is prescribed (Equations (16) and (17)), Equation (19) can be algebraically
manipulated to solve for Nw

Nw =
R∫ ∞

0 v(D) vol(D) 6(µ+4)µ+4

44Γ(µ+4) (
D

Dm
)µ exp ( (µ+4)D

Dm
)dD

. (22)

Then, all parameters needed to calculate Ze for each R and Dm pair are known. In order to solve
the integration of the indefinite integrals (Equations (21) and (22)), quadrature is used. Specifically,
the Scipy [69] quadrature is used, which uses the FORTRAN QUADPACK [74] to perform automatic
integration. The result of solving for Ze is shown in Figure 2, assuming particles are in the liquid
phase. Furthermore, the result of varying ε within the R − Dm relation is shown in Figure 2b.
Effectively, as expected, the Ze value increases away from the origin (i.e., larger characteristic sizes and
larger precipitation rates).
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(a) (b)

St
ra

t.

! =
#
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nv

.

12 dBZ
12 dBZ

Figure 2. Precipitation rate (R) and mass weighted mean diameter (Dm) theoretical diagrams. (a) The
default (ε = 1) R− Dm relation for both convective (solid red line) and stratiform (solid blue line)
regimes with the equivalent radar reflectivity factor (Ze) in logarithmic units (dBZ) is contoured (dashed
rainbow lines) assuming rain. The Ze contours are determined using the same assumptions as those in
the GPM-DPR algorithm for a range of ε values. The dashed black line is the 12 dBZ, contour which
is the GPM-DPR Ku-band minimum sensitivity. (b) Similar to (a), the rainbow contours are the Ze,
while the other lines are the stratiform relation, but now the ε parameter is varied. The default relation
(ε = 1) is in black, while ε > 1 is in red shades and ε < 1 is in blue shades.

The retrieval process can be found in the ATBD [71] but is described here briefly. Assuming
that GPM-DPR has an observed profile containing precipitation echoes, the algorithm diagnoses
whether the profile of Ze is convective or stratiform based on the vertical structure of Ze. This is
most simply done by considering if a melting layer can be detected in Ze (i.e., radar bright-band).
Additional methods are used and can be found in Section 3.5 in the ATBD [71]. Then, the phase of
each radar gate is assigned using temperature information from numerical weather prediction and
the location of the radar bright-band if present. Radar gates found 500 m above the radar bright-band
or at temperatures less than 0 ◦C are designated as solid phase. The solid phase designation assumes
that the particles contained within the gate are solid spherical particles with an effective density of
0.1 g cm−3. Radar gates found below 500 m of the radar bright-band or temperatures greater than
0 ◦C are designated as liquid phase (i.e., spherical with effective densities of 1 g cm−3). After the
phase is determined, the observed Ze and the initial estimate of ε (ε = 1) are used to search for where
the R− Dm relation intersects the contoured Ze, thus simultaneously retrieving R and Dm. Once R
and Dm are retrieved for all radar gates with precipitation echoes, the PIA and Ka-band Ze can be
calculated. This process is repeated with different values of ε, and the optimal value of ε is chosen by
minimizing the difference of the retrieved PIA with the estimated PIA and the retrieved Ka-band Ze

with the measured Ka-band Ze if available. If only Ku-band Ze is measured, then only the PIA error is
used in the optimization. For a more complete description of the algorithm, consult the ATBD.

It should be emphasized that an R− Dm relation derived from surface rain observations is used
for the entire atmospheric column, regardless of whether the gates are identified to contain ice or snow.
The only differences between the solid phase retrieval and the liquid phase retrieval is the complex
index of refraction needed for the determination of σ(D, λ), the v(D) and a slightly modified version
of Equation (18) (ATBD page 68). To the authors’ knowledge, the effect of using the rain R − Dm

relation on snow has not been investigated. It is hypothesized here that the use of a rainfall relation in
snowfall retrieval could potentially account for the large low bias reported in [14].
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3. Results and Discussion

3.1. Rainfall

The GPM-DPR algorithm documentation is not explicit regarding the origin of the R − Dm

relation, but it can be found in [28]. In that work, it was noted that the R − Dm relations were
derived using the methodology in [29] on a limited disdrometer dataset that would be tested on
more PSD observations in future work. It is noted that the data used in [29] are derived from an
impact disdrometer described in [75], which has been shown to potentially undercount small and
large drops relative to the 2DVD [76]. In order to assist in these efforts, an investigation of the R− Dm

relationship in rainfall is conducted here. The 2DVD dataset provides an opportunity to evaluate
whether the R− Dm relation used in the GPM-DPR algorithm is general enough to apply to PSDs
applicable to global precipitation measurements. All PSD data from the 2DVDs measured in rain are
considered in a bulk sense in Figure 3, without separation into convective or stratiform regimes. The 2D
histogram of the density of observations (Figure 3a) shows that the majority of points follow the general
shape of the R− Dm relations and lie between the convective–stratiform curves for ε = 1 (Figure 3a,
red and blue curves). The mode of all the R − Dm observations (Figure 3b), also lies between the
convective–stratiform relations, with it being centered on the stratiform curve for Dm < 1.5 mm and
centered on the convective curve for Dm > 1.5 mm. This is consistent with expectation that convective
rainfall generally produces larger R and larger Dm. The relationship with Ku-band Ze is shown in
Figure 3c, where Ze increases with increasing R and Dm. Overall, the 2DVD observations collected
around the world support the use of the R− Dm relation in retrievals of rainfall and are consistent
with the current R− Dm framework used within the GPM-DPR algorithm. Since the Ku-band Ze is
calculated for each raining PSD, the retrieval of PSD parameters using the GPM-DPR microphysical
assumptions (Section 2.3) can be emulated as if they were observed radar reflectivity values. This is
done by using the relations illustrated in Figure 2a (ε = 1). Then, for each raining PSD, the calculated
Ze can be used to retrieve R and Dm. Using these retrieved R and Dm values, error metrics can be
derived by comparing the retrieved values to the calculated values from the PSD. Specifically, the mean
absolute error (MAE), mean absolute percent error (MAPE), mean bias percentage (MBP) and root
mean squared error (RMSE) are used, which are formulated as follows:

MAE =
∑n

i |xri − xci |
n

; (23)

MAPE =
100×∑n

i
|xri−xci |

xri

n
; (24)

MBP =
100×∑n

i
xri−xci

xri

n
; (25)

and

RMSE =

√
∑n

i (xri − xci )
2

n
(26)

where xri is the ith retrieved value and xci is the ith calculated value. The calculation of the
aforementioned error metrics for the entire 2DVD dataset is found in Table 2. Without the classification
of the PSDs (i.e., convective or stratiform), the error is 40–50% and 20–30% for R and Dm, respectively.
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(a) (b) (c)

Figure 3. Investigating the relationship between R and Dm from all the ground-based 2DVD
disdrometers in rain. (a) Counts of observations on the R−Dm plane normalized by the total number of
observations and converted to percentages. Only bins with at least 10 observations are shown. The same
relations of R−Dm and the minimum sensitivity from Figure 2a are shown for reference. (b) Same data
as (a), but the data are normalized to the total number of observations in each bin of R. A value near
one implies that it is near the mode of observations in that bin of R. (c) Same 2D histogram as (a),
but colored by the bin median value of Ku-band calculated Ze from the PSD assuming spheres and
using a Tmatrix.

Table 2. Error statistics for the entire 2DVD dataset. MAE: mean absolute error; MAPE: mean absolute
percentage error; MBP: mean bias percentage; RMSE: root mean square error.

Variable Retrieval Error Metrics Stratiform Relation Convective Relation

R

MAE, [mm hr−1] 1.28 1.77
MAPE, [%] 54 43

MBP [%] −23 15
RMSE, [mm hr−1] 4.94 6.80

Dm

MAE, [mm] 0.21 0.26
MAPE, [%] 19 28

MBP [%] −4 −22
RMSE, [mm] 0.31 0.37

From Figure 3, it is not immediately apparent that there should be two distinct R− Dm relations.
To assess if two relations should be used, a convective–stratiform partitioning of the data could be used.
Since thermodynamic profiles are unavailable for all raining instances in the database and reanalysis
would likely struggle to diagnose the observed buoyancy on the spatial and temporal scale needed
to diagnose convection, there is no way to categorize the data based on thermodynamic variables,
and coincident radar data are not available to perform a radar-based separation [77]. Thus, the only
viable way to categorize the data into convective and stratiform regimes is to use relationships derived
from the PSD parameters themselves, such as the relationship between Nw and D0, as used in [78–80].
In [79], the authors showed that PSDs with a log (Nw) greater than that given by the expression

log (Nw) = −1.6D0 + 6.3 (27)

were diagnosed as convectively produced, while PSDs with log (Nw) less than Equation (27) were
produced by stratiform vertical motions. In [80], the authors continued this work and added an
additional constraint for weak convective instances, stating that log (Nw) > 3.85 corresponds to
convective and log (Nw) < 3.85 to stratiform regions; however, the work presented in [78] noted
that a convective–stratiform separation based solely on Nw may only apply in warm-rain-dominated
convection over tropical oceans. In [78], the authors used Empirical Orthogonal Functions (EOF)
to diagnose stratiform and convective rain and created polygons enclosing the relevant regions on the
Nw − D0 plane. Here, the polygons in that work are used to determine the classification (Figure 4a).
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The result of separating the observations shown in Figure 3 into stratiform and convective categories
is shown in Figure 4. The observations show a clear separation, with the convective-labeled points
closer to the convective R− Dm relation, while the stratiform-labeled points are indeed closer to the
stratiform R− Dm relation (Figure 4b). Similarly, the convective and stratiform R− Dm relations lie
close to the mode of their respective classified points (Figure 4c). The same error metrics from Table 2
are recalculated for the category-specific data and shown in Table 3. All metrics improve by sub-setting
the data, except for the convective rainfall rate retrieval. This is likely a result of most of the points
being located at a smaller R than the R−Dm relation, centered around Dm = 1.2 mm for the convective
labeling. However, the MAPE is similar, at 43% and 47% for the “not classified” and “classified”
data, respectively.

(a) (b) (c)

Figure 4. Convective–stratiform partitioning based on PSD parameters. (a) Normalized intercept
parameter (Nw) median volume diameter (D0) plane of all raining PSDs. The red points are labeled as
convective and blue are labeled as stratiform based on the classification in [78]. The polygons from [78]
are drawn in solid blue (stratiform) and dashed red (convective). (b) Same as Figure 3a, but with the
separated categories. Red is convective, blue is stratiform. The lighter the color, the higher the density
of points. (c) Same as Figure 3b, but with the separated categories. Colors are the same as (b).

Table 3. Error metrics for the 2DVD data after classifying the PSD data based on the values of Nw, D0

and [78].

Variable Retrieval Error Metrics Stratiform Relation Convective Relation

R

MAE, [mm hr−1] 0.14 3.37
MAPE, [%] 29 47
MBP, [%] 6 −20

RMSE, [mm hr−1] 0.43 8.57

Dm

MAE, [mm] 0.16 0.17
MAPE, [%] 18 15
MBP, [%] −14 0

RMSE, [mm] 0.22 0.27

3.2. Snowfall

In this section, the entirety of the snowfall PSDs observed in Finland are analyzed in the same
bulk way that was done for the rainfall results presented above. Figure 5 shows the results of
calculating the liquid equivalent R and liquid equivalent Dm from the snowfall PSDs. The highest
density of observations is found at a smaller Dm and larger R than prescribed by the R− Dm relation
with ε = 1 (Figure 5a). Furthermore, the ranges of both R and Dm in snow (Figure 5) are less
than that of rainfall (Figure 3). The mode of the snowfall distribution is closest to the stratiform
curve for 0.5 mm < Dm < 0.75 mm but then deviates from both empirical relations at a larger Dm

(Figure 5b). The calculated Ku-band Ze (Figure 5c) increases with increasing R and Dm, similar to the
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rainfall data analysis shown above. The snowfall PSD observations from Finland suggest that the
R− Dm relationship with ε = 1 does not fit well and could be a large source of error in the algorithm.

(a) (b) (c)

Figure 5. As in Figure 3, but now for the snowfall PSDs collected in Finland. The x and y axis are
in their liquid equivalent values (see Section 2.2.2) (a) Counts of observations on the R − Dm plane
normalized by the total number of observations and converted to percentages. The same relations of
R − Dm Figure 2a are shown for reference. (b) Same data as (a), but the data are normalized to the
total number of observations in each bin of R. A value near one implies that it is near the mode of
observations in that bin of R. (c) Same 2D histogram as (a), but colored by the bin median value of
Ku-band calculated Ze from the PSD using the method described in Section 2.2.2.

In order to quantify error in the same manner as before, the GPM-DPR algorithm is emulated, but
now using the solid phase assumptions. The retrieval metrics are shown in Table 4. There are errors of
77% and 49% for the retrieval of R using the stratiform and convective relation, respectively. This is
a +47% increase in error when compared to the stratiform relation and stratiform-classified PSDs
in rain. The error for the retrieval of Dm is not as large as the retrieval of R, at 24% and 20% for the
stratiform and the convective relation, respectively.

Table 4. Error metrics from the snowfall data measured in Finland.

Variable Retrieval Error Metrics Stratiform Relation Convective Relation

R

MAE, [mm hr−1] 0.24 0.27
MAPE, [%] 77 49
MBP, [%] −52 −2

RMSE, [mm hr−1] 0.47 0.54

Dm

MAE, [mm] 0.21 0.15
MAPE, [%] 24 20
MBP, [%] 18 2

RMSE, [mm] 0.25 0.18

One potential way to improve retrievals could be to fit new coefficients to Equations (16) and (17),
but the snowfall PSD data suggest that an R− Dm framework may not be advantageous for retrievals
in snowfall because of the lack of correlation between log(R) and Dm (Table 5). Snowfall PSDs have
a correlation value of 0.29, which is approximately half of the correlation value derived from rain,
at 0.61. The poor correlation in snow persists regardless of whether the conversion of Dm to liquid
equivalent is considered (Table 5). Thus, even fitting new coefficients to Equations (16) and (17) might
not result in optimal snowfall property retrieval.
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Table 5. Pearson ρ correlation values between log (R) and Dm for the entire rain dataset and the
snowfall measurements in Finland.

Phase Pearson ρ

Rain 0.61

Snow
Liquid Eq. Dm 0.29

Frozen Dm 0.24

3.3. Investigation of Poor Correlation between R and Dm in Snowfall

Two hypotheses are formulated to explain the poor correlation between R and Dm in snow.
One hypothesis is that the velocity–diameter relation and its natural variability in snow causes a
reduction in the correlation between R and Dm. The second hypothesis is that the mass–diameter
relation of snow and its natural variability causes a reduction in the correlation between R and Dm.
Both hypotheses are tested by imposing velocity and mass relations derived from snowfall into the
calculation of R and Dm in rain. The goal of replacing the velocity and mass relations in this way
is to test the sensitivity of the correlation of R and Dm and whether the poor R− Dm correlation in
snow can be reproduced by the rain dataset. The snowfall speed and mass relations are derived from
the PIP snowfall observations, where the particle’s observed maximum dimension is related to fall
velocity and mass. The mean fall velocity and mass for the entire dataset is shown in Figure 6 (blue)
alongside the default assumptions for the rainfall (red) and some parameterizations from previous
studies (black). In order to test the first hypothesis, the fall velocity (e.g., v(Di) in Equation (1)) is
sampled from a normal distribution with a mean and standard deviation of that in snow; in other
words, the fall velocity at any diameter Di is randomly sampled from the normal distribution with
the mean and standard deviation determined from the data in Figure 6a. Similarly, in order to test
the second hypothesis, the mass (e.g., m(Di) in Equations (1) and (2)) is sampled from the mean and
standard deviation of snow particle masses.

(a) (b)

Figure 6. Fall speed and mass diameter relations for rain and snow. (a) Particle fall velocity for rain
(red) determined by the empirical relation from [45]. Mean (blue centerline) and one standard deviation
(blue bars) particle fall velocity for snow measured by the PIP and the predicted fall velocity at −1 ◦C
from [81] (black). (b) Particle mass for rain (red) determined by assuming a spherical shape. Particle
mass for snow as retrieved from the PIP and predicted by the relation in [82].

For these tests, the following substitutions are made: replace v(Di), replace m(Di) and replace
both v(Di) and m(Di). The results of these three experiments are shown in Figure 7, and their respective
correlations are reported in Table 6. Replacing only the fall speed relation results in a 0.08 reduction in
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the correlation compared to the original rainfall analysis (ρ = 0.61; Figure 3a). As expected, there is
a reduction in the magnitude of R since the fall velocity magnitude has been decreased and Dm has
remained the same because Dm is not a function of v(Di) (Figure 7a). Substituting the mass relation
results in a much larger magnitude reduction in the correlations (−0.41), yielding similar correlation
values (0.2) to those found from the snowfall data. Figure 7b shows that there is now not only a
reduction in the magnitude of R but also in Dm. Finally, replacing both relations results in the same
correlation as swapping the m(Di). It should be noted that the experiments shown in Figure 7 are
applied separately and randomly (i.e., through the normal distribution) despite knowing that the
m(Di) is not mutually exclusive from v(Di) (e.g., more massive particles fall faster, absence of drag).
Thus, these experiments are likely missing the co-variability between v(Di) and m(Di) that could
improve the calculated correlation values.

(a) (b) (c)

Figure 7. Recalculating R and Dm for rain using measured snowfall relationships. (a) Difference in the
normalized counts between the new calculation of R and Dm using the measured snowfall velocity
relationship (shown in Figure 6a) and the original calculation (same as Figure 3a). (b) Same as (a),
but with R and Dm calculated with the measured snow mass relation (shown in Figure 6b).

Table 6. Pearson correlation coefficient between log (R) and Dm for the experiments in Figure 7.

Snow v(D) Snow m(D) Snow v(D) and m(D)

Pearson ρ 0.53 0.20 0.20

Substituting the mean mass relation from the PIP observations above is effectively using one a
and b value in the common parameterization of ice particle mass:

m(D) = aDb. (28)

The effective curve fit values of a and b from all the snowfall data presented here are 0.1 g cm−b

and 2.58, respectively, determined by the Scipy [69] curve fit method. In order to determine how the
correlation varies across a wide range of possible a and b, the formulation for mass from Equation (28)
is adopted, but a and b are systematically varied when inserted into Equation (1) and Equation (2).
It should be noted that typical values of a and b in ice and snow are 10−3 g cm−b ≤ a ≤ 10−1 g cm−b

and 1 ≤ b ≤ 3, respectively [83]. The fall velocity relation used here is the same as the original rainfall
analysis [45]. First, the result allowing no variability in the mass (i.e., the mass is exactly prescribed by
Equation (28)) is investigated (Figure 8a) and shows that the correlation between R and Dm is only
a function of b, which can be expected, as the a parameter will cancel out in Equation (2). Note that
the magnitude of the correlation for the fits a and b for the snowfall data, which is between 0.55 and
0.575, is much larger than that reported in Figure 7b (0.20). This shows that the magnitude of the
mass is less important when determining the correlation of R and Dm, while the natural variability
of mass for any particle size determines the correlation between R and Dm. To illustrate this further,
the a and b values are systematically varied again, but now the natural variability in hydrometeor
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mass is added in a similar to that done previously by sampling a normal distribution with the mean
predicted using Equation (28) and the standard deviation determined by the snowfall observations
(Figure 6b). The results are shown in Figure 8b and show that, for larger a values (a ≥ 0.75 g cm−b)
a similar relationship to Figure 8a is found. But for small a values, where many empirical fits for
snow and ice have been found (10−3 g cm−b ≤ a ≤ 10−1 g cm−b and 1 ≥ b ≥ 3; see [83] Figure 1),
the correlation is low for any value of b. Thus, for a majority of ice and snow, it is likely that the
correlation between R and Dm is poor. Doing the same type of analysis on the snowfall PSDs (e.g.,
removing the natural variability and replacing it with the rainfall relations) resulted in improved
correlations between R and Dm to about 0.5, which is the same value achieved for rain with static a
and b values (Figure 8a).

(a) (b)

Figure 8. Investigating the variance of the correlation between R and Dm with various a and b values
in the calculation of mass (m(D) = aDb). (a) No variability in Equation (28) is used. The hexagon is the
fit a and b values to the entirety of the Finland snowfall data, while the circle is the values for a liquid
sphere. (b) Same as (a), but now the mass is randomly sampled from a normal distribution with the
mean predicted by Equation (28) and the standard deviation given from the observations shown in
Figure 6b.

4. Conclusions

Since being launched in 2014, the Global Precipitation Measurement (GPM) Dual-Frequency
Precipitation Radar (DPR) has collected copious equivalent radar reflectivity factor (Ze) measurements
of both rain and snow. Microphysical parameters of interest, such as the precipitation rate (R) and mass
weighted mean diameter (Dm), are retrieved and published. An evaluation of R retrieved for snowfall
by GPM-DPR reported the current status of the GPM-DPR algorithm, showing an approximately 50%
low bias on the global mean snowfall rate compared to CloudSat [14]. In order to investigate the
potential causes of this low bias, the main microphysical assumption that the particle size distribution
(PSD) follows an R− Dm relation was evaluated. The principal conclusions are as follows:

1. Assuming that raindrops are spherical, ground-based 2D-video disdrometer measurements of
rainfall from various geographic locations show good agreement with the current GPM-DPR
algorithm framework, with the majority of observations being found near the prescribed
GPM-DPR relation and a Pearson-ρ correlation coefficient of 0.61 between log (R) and Dm

(Figure 3, Table 5).
2. The classification of PSDs as convective or stratiform according to the method in [78] (e.g., based

on the normalized intercept parameter (Nw) and the median volume diameter (D0)) is consistent
with and supports the use of two separate R− Dm relations for each rainfall class, as they reduce
error compared with the use of a single R− Dm relation (Figure 4, Table 3).

3. Ground-based Precipitation Imaging Probe measurements of snowfall in Finland do not show
the same consistency as the R− Dm retrieval framework compared to rainfall. The error using
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the GPM-DPR stratiform relation is much larger (+47% comparing Table 3 to Table 4), and the
Pearson-ρ correlation between log (R) and Dm is considerably lower (Pearson-ρ = 0.29; Figure 5;
Table 5).

4. The variability in the mass of particles with a similar maximum dimension likely causes most of
the poor correlation between R and Dm in snow (Figures 7 and 8).

The analysis provided here suggests that the use of an R − Dm relation derived in rain is
inappropriate for use in snowfall. A potential alternative is to default to old techniques for deriving
snowfall rate, such as the power-law fit between Ze and R. While there can be an order of magnitude
of uncertainty on single frequency Ze − R relations depending on the assumed particle type [10], this is
more physically based than the current GPM-DPR algorithm (version 6) in snowfall. One advantage
that GPM-DPR has over its predecessors is a second operating frequency (Ka-band). Having a second
frequency should allow for improved retrieval results compared to a single frequency, as shown
by [84]. As a potential avenue for retrieving R and Dm, the authors are pursuing the use of neural
networks to allow for an unsupervised approach to retrieve snowfall parameters. This was done
first in [85] but deserves renewed investigation since machine learning methods have improved and
new multiple frequency datasets exist for retrieval implementation and evaluation (e.g., GCPEX [27];
OLYMPEX/RADEX [26]).
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